グラフェンの光学デバイス用透明電極としての特性評価

吉木 啓介*

[要 旨]

グラフェンの光学デバイス応用の可能性を探索するため、可視光のみならず、紫外線、赤外線の 波長に対する諸特性を調査するほか、パターニング性能や、電気特性をはじめとした各種物理分析 などを行い、デバイス応用の可否を判断する基礎物性に関するデータを収集した。

1 はじめに

グラフェン薄膜は巨大な2次元分子であり、 電子デバイス、電気化学デバイス、機能性界面な どへの利用が期待されている^{1,2)}。本材料は、 およそ0.33 nmと極めて薄いにもかかわらず、良 好な電気伝導率(7.5×107 S/m)、熱伝導率 (5,000 W/mK)を持ち、吸収率は2.3%と透明度も 高い。これらの特性より、光電気デバイス用の透 明導電性電極 (TCE: transparent conductive electrode)としての活用が最も実用に近い段階 にあるといえる²⁾。我々は光の位相と偏光の分布 を自由に変換するデバイスである透過型液晶デバ イス、偏光モード変換器(polarization mode converter: PMC)を開発しており、本製品にグラ フェン TCE の適用可能性を模索している。本デバ イスを構成する液晶素子は、液晶層が透明基板に 挟まれた構造をしており、さらに、各基板上には 透明電極、配向膜が成膜され、透明電極に電圧を 印加することで液晶を駆動する。光は基板、透明 電極、配向膜、液晶の各層を通過するが、透明電 極における減衰が問題となる。最も代表的な透明 電極である ITO (Indium Tin Oxide)は、可視光の 透過特性は良好であるものの、赤外、紫外領域に おいて強い吸収を持ち、これらの波長の利用頻度 も高い、PMC のような汎用の光学液晶においては

* 兵庫県立大学 産学連携・研究推進機構 特任准教授 ITO に代わる広帯域にわたり高透明な透明電極が 必要である。

本研究では、広い波長に対応しうる光学液晶 デバイスに適用可能な透明電極として、いくつか の市販のグラフェン薄膜を入手し、その特性を計 測し、IT0と比較したときの有効性を検証した。

2 実験方法

計測試料として、CVD 単相グラフェンを c 面 カットのサファイア基板 (35 mm□、t0.5 mm、平 坦度<λ/4) にグラフェンを転写した試料を用い た。転写方式は銅上に成膜したグラフェンを転写 する方式のサンプル RG(Graphene Platform, Japan)、サンプル RA(Air Membrane, Japan)を使 用した。また、サファイア上に直接単相グラフェ ンを成膜する技術も存在し、同方式により成膜し たサンプルをDA(Aixtron SE, Germany)とした³⁾。 一方、これを一旦フィルムに転写したグラフェン をユーザーが手作業で転写する製品もあり、これ をサンプルDG (Graphenea, Spain)とした。

また、 比較対象として、我々が従来液晶使用 してきた低ドープ ITO 薄膜も使用した。本薄膜は、 Sn 2%の低ドープで、膜厚は10 nm、 常温成膜後、 550 ℃、6 時間のアニールを行ったものである。 酸素空孔を減少させることで導電率が犠牲になる が、高い光透過率が実現できる。

2. 1 4端子電気抵抗計測

電気抵抗を計測するために4端子法による抵抗計測を行った。抵抗率測定器(K-705RS,共和理研)を用いた。端子間間隔は1mmで、サンプル内を20点計測し、その平均とばらつきを計測した。

2. 2 透過率、反射率測定

透過率測定は、積分球が搭載された分光光度計 Lambda750 (PerkinElmer 社)を用いた。計測波長 は200~3000 nm とし、5 nm 毎に計測した。計測 は透過、反射双方で計測を行い、反射計測は白板 を基準として反射率を算出した。なお、検出器側 に分光機能はついていないため、反射光のみなら ず、蛍光なども検出される。

2.3 熱伝導実験

単層グラフェン薄膜が、基板の伝熱性能に与 える影響を調査した。図1に示すとおり、ステン レス製サンプルホルダに基板を設置し、出力の異 なる2種類のハロゲンヒーターを用いた。具体的 には、大出力タイプ HYS-30W-B (Hybec Corp., Japan)、および小出力タイプ HSH-9 (Inflidge Industrial Ltd., Japan)をスポット照射するこ とによって、基板に対して局部的に加熱を行い、 基板上に生じる温度分布をサーマルカメラ(FLIR ONE PRO, FLIR)によって計測した。

ぞれぞれのヒーターにおける、ヒーター-基板 間距離、スポット径、および基板上の照射位置は、 前者はそれぞれ 30mm, 5mm、ポイント3。後者 はそれぞれ9mm, 2.5mm、およびポイント1であ る。本試験においては、熱伝導率の高いサファイ ア基板に対しては高出力タイプ、無アルカリガラ ス (0A-10G, 日本電気硝子)に対しては低出力タ イプを照射した。

3 結果及び考察

3.1 抵抗計測

4端子法で測定したシート抵抗の計測結果を 図2に示す。エラーバーは標準偏差を表す。

図2 4端子法による抵抗値測定結果

本実験により、我々の液晶製品で実績のある 低ドープ ITO 薄膜に比べて、すべてのグラフェン 薄膜は半分以下の低い抵抗率を示すデータが得ら れた。この結果から今回使用したいずれのグラ フェン電極も、本製品に採用できる十分な電気導 電性をもつといえる。ただし、計測値のばらつき が極めて高い。これは、グラフェンが極めて薄く、 基板への密着性が低いため、剥離・摺動などの機 械的な負荷に弱く、プロービングの時点でダメー ジが入るためであると考えられる。本実験の精度 の範囲内で明らかになったこととして、まず転写 方式であるサンプル RA、および RG は、製造メー カーが違うにも関わらず、電気伝導率に殆ど違い が見られなかった。一方で成膜手法が異なるサン

図3 TCE 薄膜基板の可視光-近赤外光領域における透過・反射スペクトル

プル DA とは明らかな違いが観測された。具体的 には、サンプル DA の抵抗が他の2つのグラフェ ンサンプルより高くなると同時に、実験値のばら つきも抑えられている。これは、転写方式であれ ば、基板上の表面の粗さ・うねりの影響で密着性 が悪くなるため、機械的接触に弱くなった結果、

抵抗値がばらつく一方で、基板との相互作用が減 少し、抵抗率の低下が抑えられたためであると考 えられる。また、電気抵抗値は単相グラフェンの 抵抗値としては妥当な値であった⁵⁾。一方、直接 成膜方式で作製されたサンプル DA ではサファイ アのテラス構造を形成してからサファイア上に直 接グラフェンを成長させているため、基板との相 互作用が大きくなっている。その結果、端子の機 械的な接触によるダメージが軽減される一方、基 板とグラフェンの相互作用が増し、抵抗値の上昇 が生じたと思われる。

本実験の問題点として、グラフェンのような 機械的接触の影響を受けやすい材料の場合、端子 の押付ける速さ、荷重によって実験結果が変化す る可能性もあり、再現性に課題があるといえる。 よって、接触ダメージを抑えるため、接触点に金 属電極薄膜を備えた抵抗測定法を採用するか、非 接触な計測手法として、渦電流方式のシート抵抗 計測装置や、テラヘルツによるパルス反射計測を THz 時間領域分光(THz-TDS)によって行う方法⁴⁾ などが必要である。

なお、今回用いた単層グラフェンの汎用 TCE と しての可能性を考えると、電気伝導度の点で不足 がある。市販の ITO は 10~100Ω□となっており、 一般に ITO 代替の TCE は少なくとも 100Ω□を下 回ることが要求される。よって、汎用 TCE として 使用するならば、グラフェンは本質的にドープ等 の追加処理が必要な材料と言える。ただ、ディス プレイが求める低電圧や効率は、小型の液晶光学 素子には求められないため、低ドープ ITO の抵抗 値であっても使用可能である。むしろ、透過率の 低下は望ましくないためむしろ電気抵抗を下げる 目的のドープは避けたほうが良い。よって、本実 験に用いた試料は、電我々の使用目的に対して十 分な電気特性を有している。

3.2 透過率·反射率測定

図3に可視光から近赤外光の波長領域におけ る透明電極の透過・反射スペクトルを示す。図3 (a)および図3(b)は透過スペクトル、図3(c)お よび図3(d)は反射スペクトルを示す。なお、参 考として、市販の ITO 付きガラス基板(10Ω□お よび100Ω□, 硼珪酸ガラス, t0.5) のスペクト ルも併せて示す。なお、基板の特性として、硼珪 酸ガラスは波長 2.7 µm より長波長では吸収が増 大するが、それ以外の波長領域ではおよそ 89%の 透過率を有する。一方、サファイア基板は計測範 囲全域にわたり、およそ86%の透過率を示す。 各 TCE については、図3(a)および図3(c)に示す とおり、市販の ITO では、1000 nm 以上の長波長 になると、透過率が減衰し、反射率が増加するた め、透明度が減少する。これは ITO のキャリア振 動によるものでキャリア密度が高い(低抵抗な) 薄膜ほど顕著である。一方、我々が液晶に採用し ている低ドープITOは、低Snドープ、高温アニー ルによりキャリア密度を下げているため、抵抗率 は犠牲になるものの、計測領域全域で高い透過率 を示し、反射率はサファイア基板と同じである。 ただし、図3(b)に示すとおり、1.5 μm 以上の 波長では透過率が僅かに低下傾向を示し、最終的 に数%のオーダーではあるが、光が吸収される可 能性がある。一方、グラフェンはキャリア密度が 更に小さいため、近赤外領域でも透過率が減少し

ないため、低ドープ ITO において吸収が増加す る1.5 μm以上の波長において、吸収が少ないこ とが期待される。この違いは数%という僅かな量 ではあるが、高強度レーザーのように、僅かな吸 収でも大きな発熱を伴う用途に対しては熱設計上 無視できない発熱となる。以上のことから、可視 光から1500 nm以下の近赤外光の領域においては、 光吸収による発熱の抑制を優先するならば低ドー プITOを採用するのが良い。また、1500 nm以上 の近赤外領域を使用する場合、もしくは液晶を高 速駆動したい場合は、長波長の近赤外光に対して も吸収が少なく、高導電率のグラフェンを用いる と良い。また、用途を可視光に限定するなら、従 来のITOの使用も選択肢として有効である。

次に、図4に紫外線-可視領域のスペクトルを 示す。図4(a)は透過スペクトル、図4(b)は反射 スペクトルである。いずれの材料も、短波長にお いて透過率は減少する。市販 ITO が成膜されてい る硼珪酸ガラス基板は 400 nm 以下の波長で吸収 を示す。なお、データ上は 250nm 以下の波長では 透過率は見かけ上増大しているが、これは紫外線 励起の蛍光が増大したためであり、透過率の増大 を意味しない。また、サファイア基板は 200 nm 付近にわずかに吸収が有るものの、これはコンタ ミのためであると考えられ、本来この波長域の透 過率はほぼ一定である。薄膜の特性については、 市販 ITO 薄膜は 450nm 以下の波長で透過率の低下

が現れ始める。また、反射スペクトルも増大した。 吸収率は反射によって一方、低ドープ ITO は 400 nm 以下の波長で透過率の減少が現れ始める。ま た、反射スペクトルは基板と殆ど変わらないため、 透過率の減少は吸収率の増大を意味している。 よって、最大20%(@200 nm)の吸収が生じている。 グラフェンは、320 nm 以下で透過率が減少し、 270 nm 近辺で極小値を示した。また、本実験で 使用したいずれのグラフェン試料についても、 350 nm以下の短波長においては、すべての ITO 薄 膜に比べて透過率がよく、基板と比べたときの減 衰率の上昇は10~20%程度に抑えられており、 ITO の半分である。反射率も、ITO と比較して低 かった。吸収率も低ドープ ITO よりも同等かそれ 以下である。よって、紫外領域においては、グラ フェンの光学特性は ITO より良好である、また、 グラフェン同士を比較すると、同じ製法である RG と RA は全く同じ透過スペクトルを示した。DG については、スペクトルの形状は似ているが、透 過率、反射率ともに低下し、吸収率は大きくなっ ている。これは製法の違いの他に、貼り付け工程 中に生じた汚染や欠陥によるものと考えられる。

3.3 熱伝導実験

高出力タイプのヒーターを 280W、20 分間照射 した際のサファイア基板上の温度分布を図5 に示 す。図5 (a)は基板のみ、図5 (b)はグラフェン (RA)を成膜したサファイア基板上の温度分布であ る。図5 (b)においては、グラフェン薄膜の光吸 収により全体的に温度が高くなっているが、温度 分布は両図ともほぼ同じである。また、面内の温 度均一性が高く、これはサファイアの熱伝導率 (42 W/m・K)がガラス(1.09 W/m・K)に比べて大き いため、基板によって熱が速やかに拡散するため である。

図5 単層グラフェン薄膜による熱伝導促進 効果の有無(サファイア基板)

次に、ガラス基板上の温度分布を図6に示す。 サファイアに比べて熱がこもりやすい基板である ため、低出力タイプのヒーターを用いておよそ 20W、20分間照射したときのサーモグラフを示す。 図 6(a)は基板のみ、図 6(b)はグラフェン(RA)を 成膜した基板上の温度分布である。サファイア基 板に比べて温度の均一性は低く、光照射部位に熱 がこもっている様子がわかる。グラフェン薄膜が 成膜されることによって、光吸収の増加により全 体的に温度が高くなる点および温度分布の形状は ほとんど同じ点は、サファイア基板の場合と同様 となった。

図6 単層グラフェン薄膜による熱伝導促進 効果の有無(ガラス基板)

図7に、ガラス基板加熱時の測定点1,2,3 の温度のプロットを示す。プロットの最大、最小 値が同じ位置になるようにプロットすると、温度 分布はほぼ同じであることがわかる。入熱量が増 減しても、材料の熱伝導率が変わらなければ温度 分布形状は相似を保つことは伝熱学上明らかであ

ることから、サファイア基板はもちろん、熱伝導 率が低いガラス基板の使用によって相対的にグラ フェンによる熱伝導が顕在化しやすい状況下でも、 グラフェンによる寄与は認められなかった。その 理由は、グラフェンの厚みが 0.3 nm しかなく、 伝熱方向に対する断面積が極めて小さいことによ ると考えられる。そのため、グラフェンを通過す る熱量を試算した。まず、FEM 解析で基板内に実 験と同じ温度差を生む加熱パワーを試算すること で、ガラス基板への入熱量を計算した結果、 0.023 Wとなった。この結果と、高温部と低温部 の温度差、および、熱伝導率 5,000 W/mK を用い ると⁶⁾、フーリエの法則からグラフェンを介して 拡散する熱量が概算できる。その結果、グラフェ ンの寄与は1%程度となり、一連の実験結果は理 論的にも妥当なものであったと結論された。なお、 本事例では基板厚みが厚すぎたために効果が確認 できなかったが、グラフェンを積層する下地基板 が薄い場合はすなわち、ミクロン、サブミクロン オーダーより薄い材料であれば高い冷却効果を発 揮すると考えられる。具体的には、MEMS、NEMS などの微小機械の冷却には有効である可能性は高 6

4 まとめ

グラフェンは低ドープ ITO 薄膜に比べて、シー ト抵抗が低く、紫外線領域においても高い透明度 を維持することができる。本電極を液晶デバイス に応用すれば、液晶ディスプレイでは用いられな い波長領域においても高い性能を発揮することが 期待される。一方、熱伝導に与える影響は、膜厚 が薄すぎるためにほとんど効果はなく、高出力 レーザーを使用する液晶デバイスに関しては、デ バイス内で発生した熱は基板を通して放熱する必 要があることがわかった。

(参考文献)

 J. Chen et al., "Intrinsic and extrinsic performance limits of graphene devices on SiO2.", Nature Nanotech., 3 (2008), 206-209.

2) A. A. Balandin et al., "Superior Thermal Conductivity of Single-Layer Graphene." Nano Lett., 8 (2008), 902-907.

3) N. Mishra, et al., "Wafer-Scale Synthesis of Graphene on Sapphire: Toward Fab-Compatible Graphene", Small, **15** (2019) 1904906.

4) J. D. Buron et al., "Graphene Conductance Uniformity Mapping", Nano Lett., **12** (2012), 5074-5081.

5) P.J. King et al., "Improvement of Transparent Conducting Nanotube Films by Addition of Small Quantities of Graphene." ACS Nano., **4** (2010), 4238-4246.

 T. Yamamoto and S. Konabe, "Thermal Transport and Thermoelectric Properties of Graphene and Related Materials", J. Vac. Soc. Jpn., 57 (2014), 457.