CAE を用いた異方性材料の強度解析手法の検討

大見 庸平*1

上原 忍^{*2}

服部 悟*2

田中 敦士*3

[要 旨]

異方性材料を用いて製造された部品を CAE を用いて強度解析し、その際の実施条件について検討した。

異方性材料として 3D プリンタ(粉末床溶融結合方式)を用いて造形した試験片を使用し、その 機械的性質を非接触ビデオ伸び計によって取得した。得られたパラメータをもとに CAE を用いて 強度解析を行ったところ、材料の弾性域において、実測定によって得られた結果と一定の相関性が あるという知見を得た。

1 はじめに

3D プリンタは、製造業の様々な分野で試作モデ ルや治具等に広く利用され、開発期間の短期化や 製造コストの低価格化に貢献している。

近年では、さらなる高品質化のため、製品の設 計段階でCAE (Computer Aided Engineering)を用 いた強度解析を行う需要が新たに出てきている。

しかし、3D プリンタの造形物、特に粉末床溶融 結合方式やFDM(熱溶解積層方式)による造形物は、 積層方向により造形物の強度が異なる異方性材料 であることが知られている。なお、このように高 速三次元成形機を用いて造形された樹脂成形品は、 成形方向により強度が異なることが、以前当セン ターで実施された研究により判明している。¹⁾ この異方性材料が具体的にどの程度強度に影響す るかは造形方式等により異なるため、CAE で解析す る上で材料の異方性の設定が重要となる。

*1	基盤技術課	副主査
* 2	基盤技術課	主任研究員
*3	基盤技術課	技師

そのため本検討では、CAE で異方性材料を強度解 析するうえで必要な機械的性質などの条件等につ いて、強度試験の結果と比較しながら検討する。

2 検討方法

2. 1 強度試験装置

強度試験は、万能材料試験機(インストロン ジャパン社製、1122型 5kN)を用いて引張試験を 行い、最大引張応力(MPa)と破断時の伸び量(mm) を測定した。

2. 2 強度試験片

強度試験片は、JIS K 7161-2の試験片1Aを基本
とし、高速三次元成形機(株式会社アスペクト製
RaFaEL 300F)を用いて、成形方向を変えて造形した。ただし、つかみ部分での破壊を防ぐため、全
長を試験片1Aより大きい180mmに変更している。
^{2~4)}(図1)

試験片の造形条件は、材料はナイロン粉末(製品名:ASPEX-FPA)を使用し、レーザ出力 14W、 造形部温度 193℃、積層ピッチ 0.1mmとすること で試験片に異方性をもたせた。

2. 3 強度解析手法

強度解析は CAE (ANSYS 社、ANSYS Mechanical) を用いた。

解析条件は、引張試験片を各軸方向に配置し、 片端を固定端として、反対側の端面に試験片に平 行な方向に引張荷重を発生させ、その時の伸び量 をシミュレーションした。

3 結果および考察

3. 1 強度試験結果

各軸方向に対して平行に造形した試験片の強度 試験結果を表1及び図2,3に示す。

また、破断までの応力伸び線図を図 4,5,6 に示 す。

表1	引張試験結果	(万能材料試験機	1122 型)
20.1			

	最大引張応力	伸び量 (最大応力時)
	[MPa]	[mm]
X軸方向	50. 41	22.58
Y 軸方向	48.30	22.58
Z 軸方向	19.25	2.00

※各5回試験を行った平均値

最大引張応力について、Y軸方向はX軸方向の約 96%であるのに対し、Z軸方向は約38%であった。

図2 各方向の最大応力

図4 引張試験結果 (X軸方向試験片)

図6 引張試験結果(Z軸方向試験片)

また、Z軸方向はY軸方向に対しても約40%であり、X,Y どちらの軸方向に対しても半分以下の値であった。

伸び量は X, Y 軸方向はほぼ同じ値であったが、Z 軸方向は X, Y 方向に対し、約9%であった。

これは、3D プリンタが1層ずつ造形し積層して いくことで造形物を形作るため、層と層の境界面 が引張方向の力に対して弱い構造であったためと 考えられる。

3.2 強度解析結果

3.2.1 単軸方向の解析

X, Y, Z それぞれの単軸方向の強度解析シミュレー ション結果と弾性域での強度試験結果の比較を表2 に示す。それぞれの方向の試験片のイメージを図 7に示す。

この強度解析シミュレーションにおいて使用し た X, Y, Z 軸方向に対してそれぞれ平行な方向に造 形した強度試験片の各方向の機械的性質(ヤング 率、ポアソン比)は非接触ビデオ伸び計(図8) を用いて取得した。(表3)

表 2 のとおり、強度試験結果と強度解析シミュ レーション結果は、比較的近い値となり、弾性域 において、各軸方向のヤング率(Ex, Ey, Ez)等を 機械的性質として設定した強度解析シミュレー ション(図9, 10, 11)は妥当であったと考えられ る。

表2 強度解析と強度試験の結果比較(単軸方向)

弹性域	引張応力	伸び(実測)	伸び(解析)
	[MPa]	[mm]	[mm]
X軸方向	30.0	2.55	2.16
Y軸方向	30.0	2.61	2.02
Z軸方向	5.00	0.43	0.39

表3 引張試験結果(非接触ビデオ伸び計)

	ヤング率		ポア	ソン比
	[GPa]			
X 軸方向	Ex	1.68	νx	0.48
Y 軸方向	Ey	1.78	νy	0.48
Z 軸方向	Ez	1.49	νz	0.33

図7 各軸方向に対して平行に造形した試験片

図8 非接触ビデオ伸び

図9 X軸方向試験片の強度解析

図10 Y軸方向試験片の強度解析

図11 Z軸方向試験片の強度解析

3. 2. 2 異方性材料の強度試験と強度解析

各方向の伸び量の計算結果と、万能材料試験機 を用いて引張試験を行い作成した応力伸び線図の 結果の関係性を確認した結果、各軸方向の機械的 性質は表 3 のパラメータを使用可能と判断したた め、これを適用し、X,Y,Z 軸全ての軸に対して 45°の傾きを持つ試験片(以下、「XYZ 軸方向試験 片」という。)について強度解析を行った。

XYZ 軸方向試験片のイメージを図 12 に、強度試験と強度解析の結果の比較を表4に示す。

また、強度試験により得られた各機械的性質は 表5のとおりである。

このように X, Y, Z 軸方向のパラメータを使用し て XYZ 軸方向試験片についても強度解析シミュ レーション(図13)を行ったところ、単軸方向の試

図 12 XYZ 軸方向試験片

表4 強度解析と強度試験の結果比較(XYZ 方向)

弹性域	引張応力	伸び(実測)	伸び(解析)
	[MPa]	[mm]	[mm]
XYZ 軸方向	2.00	0.17	0.24

表5 引張試験結果(万能材料試験機 1122 型)

碰性城	最大引張応力	伸び量(最大応力時)
开口动	[MPa]	[mm]
XYZ 軸方向	9.29	0.84

図13 各軸に対し傾きをもつ試験片の強度解析

験片同様に、強度試験結果と相関的な結果となった。

このことから、弾性域において強度解析シミュ レーションを実施するうえでの条件が明らかに なった。

ただし、XYZ 軸方向試験片の引張試験結果は、前述の各軸の単軸方向引張試験結果と比較して、最大引張応力、伸び量ともに小さい結果となった。

これは、XYZ 軸方向試験片の引張試験を実施した際に、せん断応力が最大になる方向と積層面が重なるためと考えられる。

引張試験後の試験片は、図 14 のとおり積層面が 剥離したような形状で破壊されており、他の方向 の試験片より強度が低くなる要因の一つと思われ る。

図14 積層面の剥離

図 15 引張試験結果(XYZ 軸方向試験片)

また、図 15 のとおり剥離する際の挙動は試験片 ごとに異なり、最大引張応力・伸び量などは試験 片ごとの個体差が大きくなっている。

4 まとめ

X, Y, Z 軸方向に対してそれぞれ平行に造形した試 験片の強度試験を行った結果と強度解析を行った 結果を比較したところ、弾性域では一定程度一致 していた。この各軸方向の強度試験結果を用いる ことで、XYZ 軸方向試験片の引張試験時の弾性域で の挙動を再現できる可能性についての知見を得た。

また、XYZ 軸方向試験片は破断時に積層面の剥離 が発生するが、CAE では剥離時の挙動を再現できな いため、この剥離強度をどのように評価していく かが、今後の課題である。

(参考文献)

京都府中小企業技術センター技報 No. 41 2013
年 ラピッドプロトタイピング樹脂成型品の試作
利用に関する検討

宮内 宏哉、上原 忍、前田 一輝、後藤 卓三2) JIS K 7139:2009 プラスチック-試験片

 JIS K 7161-1:2014 プラスチック-引張特性の 求め方-第1部:通則

4) JIS K 7161-2:2014 プラスチック-引張特性の
求め方-第2部:型成形,押出成形及び注型プラス
チックの試験条件