樹脂粉末積層造形の成形品物性制御に関する調査研究(Ⅱ)

宫内宏哉^{*1} 前田一輝^{*1}

後藤卓 三*1

[要 旨]

樹脂粉末積層造形により作製した、密度の異なる成形品の断熱特性及び振動特性を評価した。成 形品密度が低いほど熱伝導率が低下した。密度を約1/2とした成形品では熱伝導率が約1/4の値を 示した。孔方向による顕著な差異は見られなかった。また無人飛行機の電池保持部品を樹脂粉末積 層造形により作製した。柱構造部の密度を低下させることにより、モーターによる振動の影響を約 1/15に低減することができた。

1 はじめに

樹脂粉末積層造形とは、樹脂粉末を敷いた層 (厚 0.1mm 程度) にレーザ光を走査して照射部の みを溶融させ、この層を繰り返し積層させること により三次元構造体を作製する方法であり、付加 製造の一つに位置付けられる。レーザ走査には三 次元データが用いられ、近年注目されている 3D プリンタの造形方式の一つである。

3D プリンタの主な活用分野は試作や模型の製 作であるが、今後、ものづくりのマス・カスタマ イゼーション化の進展に伴い、単品・小ロット品 の最終製品や部材を生産する加工技術の一つとし て利用されることが期待されている¹⁾。樹脂粉末 積層造形は、造形品の強度及び耐久性に優れる特 長があり、最終製品及び部材を 3D プリンタで生 産する際の中核技術として注目されている。

3D プリンタは、切削等の除去加工機と比較し て、複雑な三次元構造体を容易に作製できる特長 があり²⁾、多孔体の造形も可能である。3D プリ ンタでは多孔体と母材が組み合わさった複合部材 を一度に造形できるため、今後、3D プリンタ活

*1 基盤技術課 副主查

用の拡大が期待される分野の一つと考えられる。

3D プリンタで多孔体を造形するには、多孔体 の三次元データを作成する方法と、三次元データ はソリッドのままで造形条件を変えて多孔体を造 形する方法の2通りがある。後者の方法は、ファ イバーレーザにより微細な加工が可能になったこ とから、多孔質シート³⁾など金属造形を中心に造 形事例が報告されている。

前報⁴では、ファイバーレーザを搭載した樹脂 粉末積層造形装置を用い、造形条件のうちレーザ 出力及びレーザ走査幅を適切に制御することによ り造形品の密度を変え、微細な穴を多数有する多 孔体部分を持った部材を作製する方法を確立した。 本研究では、多孔体を有する樹脂造形品の熱伝導 率及び振動特性を評価した。

2 実験方法

2. 1 樹脂粉末積層造形装置

樹脂粉末積層造形装置はアスペクト製 RaFaE1300Fを用いた。本装置の熱源は、ビーム 径 0.17mmのファイバーレーザを採用している。 樹脂粉末材料はナイロン 11 粉末(ASPEX-FPA 黒、 平均粒子径 0.05mm)を用い、粉末床溶融結合法 により造形した。造形条件は、レーザ走査速度を 10m/sec、レーザ走査方向を 30 度方向、積層ピッ チを 0.1mmとした。

造形品の密度を変えるため、造形条件のうち、 レーザの出力を 8、11、14、17W の 4 通り、レー ザ走査幅を 0.08、0.25、0.50mm の 3 通りで変化 させた。なお、造形条件の制御により得られる多 孔体は、積層方向に貫通した孔を多数有しており、 異方性を持つ。よって、3D データの配置方向を 変えることにより、孔の方向を制御することが可 能である。

なお、樹脂粉末積層造形においては、樹脂粉末 がレーザにより溶融された後、冷え固まって固体 となる際に体積が収縮し、三次元データよりも小 さい造形品が出来上がる。そこで、体積収縮分を 補完するため、元の三次元データを一定割合で拡 大する方法が一般に用いられており、この拡大率 はスケール値と呼ばれている。ただし形状や肉厚 等により収縮量が異なるため、造形品の寸法精度 を高めるためには、まず当該製品を造形した後に 寸法計測を行い、その結果を反映させて、スケー ル値を精密化する必要がある。今回の造形では、 全ての造形品に対して、当該装置での汎用スケー ル値を適用しており、スケール値の精密化は行っ ていない。

2.2 熱伝導率測定方法

固体の熱伝導率λ(W/m・K)は次式で求められる。

 $\lambda = \alpha \times \rho \times Cp$ $\alpha : 熱拡散率 (mm²/S)$ $\rho : 密度 (g/K)$ Cp : 比熱容量 (J/g·K)

造形品の熱拡散率は、ネッチ・ジャパン製の熱 伝導率測定装置 LFA467 を用い、レーザーフラッ シュ法により測定した。解析には Cowan モデルを 用いた。レーザーフラッシュ法による熱拡散率 *a* は次式で求められる。

$$\alpha = 0.1388 \cdot d^2 / t_{1/2}$$

d:評価試料厚 (mm)
 $t_{1/2}: ハーフタイム$ (s)

熱拡散率αに対し評価試料厚は二乗で影響する。 そこで解析に用いる評価試料厚の値は、マイクロ メータによる造形品厚の測定値を用いた。

密度は、造形品重量を精密上皿天秤で量り、ノ ギス及びマイクロメータで計測した造形品の三辺 の長さから体積を算出し、重量を体積で除して算 出した。

比熱容量測定は、島津製作所製の示差走査比熱 計 DSC-60plus を用いて、25℃におけるナイロン 11 粉末の比熱容量を測定し得られた値を用いた。 比熱容量測定の標準試料にはα-アルミナ粉末を 用い、窒素雰囲気下で測定した。

評価試料は一辺 10mm、厚みが 2mm の直方体と した。多孔体構造を持つ評価試料については、孔 の方向を、面に水平かつ上下方向、面に水平かつ 45 度方向、面に垂直の 3 通りとした。孔方向が 面に垂直である試料については、孔内部の粉末を 除去するため、一旦片方の面を外し、圧縮空気に より吹き飛ばした後、面を元に戻した。全ての評 価試料は、測定前にグラファイトスプレーを用い て表面の黒化処理を行った。

2.3 振動測定方法

振動測定対象は無人飛行機とし、電池保持部に おけるプロペラ駆動用モーターの振動を計測した。 なお、無人飛行機全体及び電池保持部の外観写真 を図1に示す。

図1 無人飛行機外観写真 (a) 表面 (プロペラ面) (b) 裏面 (電池保持面)

無人飛行機には、京商製クアトロックス ULTRA を用いた。モーターの出力は、安定した測定を行 うために最大出力とし、プロペラを外した状態で 測定した。電池保持部は、純正部品(試料 A)の 他、樹脂粉末積層造形装置 RaFaE1300F を用い、 レーザ出力及び走査幅を変えることで密度を変え て造形した部品 4 種類(試料 B~E)を順次取り 付けて振動計測を行った。樹脂粉末積層造形に用 いるための 3D データは、東芝 IT コントロールシ ステム製の産業用 X 線 CT 装置 TOSCANER-3230MFD を用いて純正部品の形状を採取し STL 形式に変換 して作成した。なお、電池保持部は無人飛行機本 体へ8か所のビスによって固定されており、ビス を取り外すことで容易に部品交換可能である。製 品及び造形した電池保持部の重量は表1の通りで ある。

表1 電池保持部品

No.	作製方法	重量
А	製品	5.16g
В	樹脂粉末積層造形	4.61g
С	樹脂粉末積層造形	3.80g
D	樹脂粉末積層造形	3.10g
Е	樹脂粉末積層造形	2.88g

振動測定は、DYTRON 製 1 軸加速度センサー 3225F1 を測定箇所表面に貼り付けて測定した。 センサーで採取した振動データは、共和電業製ユ ニバーサルレコーダ EDX-200A を用いて記録し、 共和電業製波形解析ソフトウェア DAS-200A を用 いて解析した。

3 結果及び考察

3.1 比熱容量及び熱伝導率評価

本造形に用いるナイロン 11 粉末の 25℃におけ る比熱容量測定結果は、1.64J/(g・K) であった。 既存文献 ⁵におけるポリアミドの比熱容量はおよ そ 1.6J/(g・K) であり、既存文献に示された値に 近い測定結果が得られた。

次に、密度を変えて造形した試料の熱伝導率測 定結果を図2に示す。孔の方向によらず、密度が 低下するほど熱伝導率が低下することが確認でき た。密度を 0.95g/mm³から 0.47g/mm³まで約 1/2 に低下させると、熱伝導率は 0.37W/m・K から 0.10W/m・K まで約 1/4 に低下した。

孔方向が面に垂直の試料では、密度が低い場合 に、他の試料と比べると若干高い熱伝導率を示し た。これは、孔方向が面に垂直の試料においては、 孔内部の粉末を除去するため、一旦片方の面を外 したことによる影響と考えられる。

図2 熱伝導率測定結果

3. 2 振動特性評価

試料 A~E の 5 種類の電池保持部をそれぞれ取 り付けた状態で無人飛行機を駆動し、図 3 に示す 測定点①、②、③の 3 箇所で振動測定を行った。 測定点①は無人飛行機のプロペラ部の根本である。 ②は無人飛行機の電池保持部と本体が接触してい る部分である。③は電池保持部の最上面であり本 体と測定点③の間には柱構造を介して段差がある。

図3 振動測定箇所

測定点①、②及び③における振動測定結果を表 2~4 に示す。いずれも、図の横軸は計測時間(s)、 縦軸は加速度(m/s²)であり、これら全ての図のス ケールは同じに揃えてある。

試料	振動測定結果	
A	1000 100	
В	1000 1000	
С	1000 1000	
D	1000000000000000000000000000000000000	
E	·····································	

表3 測定点②での振動測定結果

表4 測定点③での振動測定結果

測定点①及び②では、いずれの電池保持部の造 形品(試料 B~E)も、元から当該無人飛行機に 取り付けられていた電池保持部品(試料 A)より 大きな振動が計測された。これは造形時に用いる スケール値を精密化していないため、製品よりも 1mm 未満程度であるがわずかに大きく造形されて いることが影響したと考えられる。

測定点③では、製品(試料 A)で測定された振 動よりも造形品(試料 B~E)の振動の方が小さ く、また重量が低下するほど振動が小さくなった。 表 2~4 に示す振動測定結果をフーリエ変換す ることで、振動数に対する加速度を求めることが できる。そこでフーリエ変換により得られた、 モーター起因と考えられる約 1000Hz の加速度を 図4にまとめて示す。横軸は電池保持部の製品及 び造形品の重量(g)、縦軸は加速度(m/s²)である。 測定点①及び②では、電池保持部の重量が低下し ても加速度の低下は見られなかった。一方、測定 点③では電池保持部の重量が低下するほど加速度 は低下しており、試料 A(重量 5.16g)に対し最 も軽い試料 E(2.88g)では加速度がおよそ 1/15 に低下していた。

測定点③での振動測定結果は、測定点①及び② の結果とは挙動が異なった。その理由としては、 測定点①、②はいずれも無人飛行機本体とビス止 めされて接触している部分を測定しているが、測 定点③は無人飛行機本体と接触しておらず、本体 との間に柱構造を有している。柱構造部において 振動が吸収されるため、柱構造部の密度が異なる ことで振動吸収の挙動が変化したと考えられる。

4 まとめ

樹脂粉末積層造形により作製した、密度の異な る成形品の断熱特性及び振動特性を評価した。

樹脂粉末積層造形の造形条件のうち、レーザの 出力を 8、11、14、17W の 4 通り、レーザ走査幅 を 0.08、0.25、0.50mm の 3 通りで変化させたと ころ、密度を 0.95g/mm³から 0.47g/mm³まで低下 させることができた。これら造形品では、密度が 低いほど熱伝導率が低下し、0.37W/m・K から 0.10W/m・K まで約 1/4 の値となった。孔の方向を、 面に水平かつ上下方向、面に水平かつ 45 度方向、 面に垂直の 3 通りとしたが、孔方向による顕著な 差異は見られなかった。

また無人飛行機の電池保持部品を樹脂粉末積層 造形により作製し、振動特性を評価した。無人飛 行機本体に直接取り付けられた部分については、 電池保持部品の密度を変えても振動が低減される ことは見られなかった。一方、無人飛行機本体と の間に柱構造部を有する部分については、密度を 低下させることにより、モーターによる振動の影 響が低減した。製品(重量 5.16g)に対し最も軽 い造形品(2.88g)では、加速度が約1/15に低減 した。

(参考文献)

1) 日経ものづくり 2016 年1月号, p. 52

2) 丸谷洋二, 早野誠治: 解説 3D プリンター, オ プトロニクス社, p. 153 (2014)

 3)清水透,中野禅,佐藤直子,松崎邦男,佐々雅祥, 萩原正:日本機械学会 2014 年度年次大会講演論 文集, S0440103 (2014)

4) 宮内宏哉,後藤卓三,前田一輝:京都府中小企業技術センター技報,43, p.1(2015)

5)小林昭:構造材用プラスチック工学,オーム 社,p.283 (1962)