ナノポーラス金属材料の創製

袴田昌高*1

[要 旨]

大きな表面積を有し電極やセンサ等への応用が期待されるナノポーラス金属の応用範囲を拡大す るために、プロセスの常温化を検討した。出発材料である2元系合金を電析およびスパッタリング で作製し、これを脱合金化に供して片方の成分を除去することで、孔径10~20 nm 程度のナノポー ラスパラジウムおよび金薄膜を常温で作製できた。電析の場合はマイクロメートルオーダの、ス パッタリングの場合はナノメートルオーダの膜厚となった。

1 はじめに

20世紀末からのナノテクノロジーの発展にと もない、すでに種々のナノ材料が創製されている。 この中で、著者らは比較的新しいナノ材料である ナノポーラス金属¹⁾の創製技術に着目した。「ナ ノポーラス」とはナノメートルオーダの大きさの ポア(気孔)とリガメント(帯、骨格)からなる 開気孔のスポンジ型構造を指す。このナノポーラ ス金属は腐食プロセスのひとつである脱合金化 (dealloying)法により作製できる。2元系合金 から卑な元素のみを酸などに漬けて除去するだけ で、残った元素がナノポーラス構造を形成する。 ナノメートルオーダの気孔に由来する大きな比表 面積を有し、金属固有の導電性や触媒特性などと 組み合わせて、用途開発が盛んに行われている ²。

ナノポーラス金属の出発材料である二元系合 金は二つの金属元素の単体を高温で融解して作る のが直感的であり、これまで筆者らもそのように して出発合金を作製し、ナノポーラス金属の開発 を行ってきた³³。しかし金属の融解や均質化熱 処理などの高温プロセスには大きなエネルギー消 費を伴う。ナノポーラス金属の用途開拓のために は、プロセスの常温化が必須である。

以上を考慮し、本研究では室温プロセスとし て(1)めっき(電解析出、電析)および(2)ス パッタリングにより2元系合金薄膜を形成し、 その後の脱合金化処理によりナノポーラス化する ことを試みた。これらの方法では薄膜を形成でき ることから、ナノポーラス金属の応用範囲を広げ ることにも貢献できる。

2 合金電析膜を出発材料としたナノポーラ スパラジウムの創製

合金電析膜からナノポーラス金属を作った研究は 金⁴⁾ や白金⁵⁾ について報告されている。一方、 著者らはパラジウム - コバルト合金の脱合金化に よりナノポーラスパラジウムを作製できることを 見出している³⁾。ここではパラジウム - コバル ト合金薄膜を電析し、そこからコバルトのみを脱 合金化で取り除くことにより、ナノポーラスパラ ジウム薄膜を形成することを試みた。

2. 1 実験方法

パラジウム - コバルト合金の電析を、文献⁶ を参考にして以下の方法で行った。電解液はパラ ジウムおよびコバルトの塩化物浴とした。浴成分 の詳細は表1のとおりであり、金属塩(塩化パラ

^{*1} 京都大学大学院エネルギー科学研究科 准教授

ジウム・塩化コバルト)のほかに塩化アンモニウムとグリシンを含んでいる。各試薬を所要量だけ秤量して蒸留水に溶解し、マグネチックスターラで十分に攪拌しつつ、微量のアンモニア水溶液を用いてpHを9.4に調整した。表面を1 µm ダイヤモンドペーストで鏡面研磨したパラジウム板研磨面を1 cm² 露出させ、作用極(電析極)とした。対極は白金線とした。電解液に窒素ガスを10分間吹込んで脱気し、-12.5 mAの定電流を90分流したのち、作用極を蒸留水で十分洗浄した。

この作用極を引き続き作用極として用いて脱 合金化を行った。電解液は 0.1 mol/L 硫酸とし、 ここでは三極式電解セル(対極:白金線、参照電 極:銀-塩化銀電極)を用いた。+0.65 V(銀-塩化銀電極基準)の定電位を 90 分印加したのち、 作用極を蒸留水で十分洗浄した。

電析および脱合金化はすべて室温(293 K)で 行った。脱合金化前後の試料表面を走査電子顕微 鏡(SEM)で観察するとともに、エネルギー分散 型X線分光法(EDXS)により元素分析を行った。

表1 パラジウム - コバルト合金電析膜作製に用 いた浴の成分

化合物名	化学式	濃度 (mol/L)
塩化パラジウム	$PdCl_2$	0.045
塩化コバルト六水和物	CoCl ₂ 6H ₂ O	0.255
塩化アンモニウム	NH ₄ Cl	0.5
グリシン	C ₂ H ₅ O ₂ N	0.6

2. 2 結果および考察

電析後のパラジウム板表面にはほぼ一様な付 着物が見られた。板厚をマイクロメータで測定し た結果、付着物の厚さは約10 µm であった。また、 脱合金化処理時には作用極周辺の硫酸が赤く着色 した(処理前は無色)。2 価のコバルトイオンは 水溶すると赤色を呈することから、硫酸中へのコ バルトの溶出が示唆される。

図 1 に脱合金化前後のパラジウム - コバルト 合金表面の SEM 観察結果を示す。脱合金化前のパ ラジウム - コバルト合金電析膜にはなかった微細 なナノポーラス構造(孔径 10 nm 以下)が、脱合 金化後に形成されていることがわかる。

(a) 脱合金化前

(b) 脱合金化後

図 1 脱合金化前後の電析パラジウム - コバル ト合金表面の SEM 写真

図 2 に脱合金化前後のパラジウム - コバルト 合金表面の EDXS 分析結果を記す。脱合金化前試 料のコバルトの含有量に比べ、脱合金化後試料の コバルト含有量が減少していることがわかる(な おここでは基板のパラジウムも一緒に分析してい る可能性があるため、定量的な評価は避ける)。

図2 脱合金化前後の試料 EDXS 分析結果

以上の観察・分析結果からパラジウム - コバ ルト合金を電析し、そこからコバルトのみを選択 的に溶解することで、パラジウムを主成分とした ナノポーラス構造を形成できたといえる。

なお今回試した方法では、電極のセッティン グや電解液が電析時と脱合金化時で異なるため、 セッティングの変更や電解液の交換が必要である。 今後の条件精査により、電析電解液中でそのまま 印加電位(電流)を逆転させて脱合金化を行える 可能性もある。

3 合金スパッタリング薄膜を出発材料としたナノポーラス金の創製

スパッタリングでも合金薄膜を容易に作製す ることでき、特に電析よりも均一かつ薄い膜を作 ることが可能である。ここでは金銀合金薄膜をス パッタリングにより作製し、その脱合金化により ナノポーラス金薄膜を作製した。なおナノポーラ ス金属作製時には脱合金化時の体積収縮に伴って 試料が脆化・散逸することがあるが、これを防ぐ ために下地層として(ポーラスでない)緻密金を スパッタリング積層した。

3.1 実験方法

スパッタリング装置(SVC-700RF、サンユー電 子(株)製)を用いて、スライドガラス表面にま ず金、次に金銀合金を製膜した。脱合金化の対象 である金銀合金層ならびに下地の金層の膜厚を 種々変えた試料を作製した。なお、スパッタリン グ領域はスライドガラス上に設けたメタルマスク を用い、幅2mm、長さ45mmの長方形領域に制 限した。また膜厚は触針式段差計(Dektak150、 (株)アルバック製)を用いて別途計測した。長 方形に積層した薄膜の端部および中央部の厚さを 測定し、その平均を膜厚として採用した。

脱合金化処理として、スパッタリング積層済 みのスライドガラスを 69 mass%硝酸に 253 K で 24 時間浸漬した。この段階で最表面の金銀合金 層から銀が溶解し、残った金がナノポーラス構造 を形成する。脱合金化後の試料は純水で洗浄した。 この脱合金化から洗浄の一連の過程の中で試料の 剥離等があるかどうかを調べた。洗浄後試料は乾 燥ののち SEM 観察および EDXS 分析に供した。

3.2 結果及び考察

表 2 に、下地の金層と脱合金化の対象である 金銀合金層の膜厚と、取り扱い中の剥離の有無を まとめて記す。表 2 からは、下地の金薄膜の膜厚 がその上に積層した金銀合金層膜厚の 25%以上あ れば、(少なくとも本研究で採用した脱合金化条 件では)取り扱い中に薄膜がスライドガラスから 剥離しないことが示唆される。

図 3 に脱合金化後の試料表面の SEM 写真およ び EDXS 分析結果を示す。SEM により、孔径・リ ガメント径約23 nm のナノポーラス構造が観察さ れた。また、EDXS 分析によれば、銀はほとんど 溶解除去されている。

No INT			
下地金層膜厚	金銀合金層	層厚比	剥離
(nm)	膜厚 (nm)		
35	185	0.19	あり
70	185	0.38	なし
70	280	0.25	なし
70	370	0.19	あり

表2 スパッタリング製膜層厚と剥離の有無の 関係

図 3 脱合金化後のスパッタリング金銀合金表面 の(a) SEM 写真および(b) EDXS 分析結果

以上のように、スパッタリング合金を出発素 材として用いることで、ナノポーラス金薄膜を作 製できることがわかった。特に下地としてあらか じめ金層をスパッタリングしておくことでスライ ドガラスからの剥離を抑えることができ、その後 の取り扱いが容易になる。

4 まとめ

初期合金を電析膜やスパッタリング膜とする ことで、ナノポーラス金属薄膜を作製できること がわかった。初期合金化プロセスを常温化したこ とでコストが削減され、また薄膜形成に有利な手 法を用いることでナノポーラス金属の利用形態を 広げられる。プロセスには改善や検討の余地があ り、今後の条件の精査によりそれらの可能性が追 求される。

(参考文献)

- J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov and K. Sieradzki, Evolution of nanoporosity in dealloying, *Nature* **410**, 450 (2001).
- J. Weissmüller, R. C. Newman, H.-J. Jin, A. M. Hodge and J. W. Kysar, Nanoporous metals by alloy corrosion: fabrication and mechanical properties, *MRS Bull.* 34, 577 (2009).
- 3) M. Hakamada and M. Mabuchi, Fabrication, microstructure, and properties of nanoporous Pd, Ni, and their alloys by dealloying, *Crit. Rev. Solid State Mat. Sci.* 38, 262 (2013).
- C. Ji and P. C. Searson, Fabrication of nanoporous gold nanowires, *Appl. Phys. Lett.* 81, 4437 (2002).
- H. Liu, P. He, Z. Li and J. Li, High surface area nanoporous platinum: facile fabrication and electrocatalytic activity, *Nanotechnology* 17, 2167 (2006).
- F. M. Takata and P. T. A. Sumodjo, Electrodeposition of magnetic CoPd thin films: influence of plating condition, *Electrochim. Acta* 52, 6089 (2007).