# 湿潤環境に暴露されるマグネシウム合金構造体 における疲労強度への影響

## 植松美彦\*

# 1. はじめに

マグネシウム (Mg) 合金は実用上最も軽い金属 であり、機械構造物の省エネルギー化や環境調和 などの要求に応える軽量構造材料として注目され ている.特に展伸Mg合金は鋳造Mg合金よりも高 強度であり、構造体への適用が期待できる.しか し,現在のところ携帯用電子機器の筐体などへの 利用が主流であり、強度部材への利用は進んでい ない. その一つの理由として, Mg合金は水あるい は塩水中のような腐食環境中はもちろん、大気中 の湿度によっても腐食するという耐食性の低さが ある.したがって、屋外使用を想定した場合には 表面に厚い保護皮膜を塗着せねばならない.しか し、Mg合金の強度部材としての用途を考えると、 設計上重要となる繰返し荷重下における疲労特性 の検討が重要であり,特に湿潤環境に暴露された 状態での基本的な疲労特性を把握する必要がある.

本研究は、湿潤環境に暴露された状態での、展 伸Mg合金の基礎的な腐食疲労挙動を明らかにす ることを目的とする.そこで、一般的な構造用Mg 合金であるAZ系合金でAl添加量の異なるAZ80A、 AZ61A押出材および、AZ系合金よりも延性がある とされ、Znの添加量が小さいAM系合金のAM60押 出材を用い、大気中および純水中で回転曲げ疲労 試験を行い、その疲労挙動について検討した.

## 2. 供試材および実験方法

供試材は、Mg-Al系合金のAZ61A、AZ80Aおよ びAM60押出材である.素材は、押出比19.5で直径 20.4mmの丸棒に加工されている.図1に横断面で 観察した各材の微視組織を示す.いずれもほぼ等 軸粒となっており、平均結晶粒径は、それぞれ12  $\mu$ m、17.9 $\mu$ m、8.7 $\mu$ mである.各材の化学組成を 表1に、引張り試験により実測した機械的性質を表 2に示す.引張強さ $\sigma$ Bは、Al含有量の増加に伴っ て向上しており、一般的な傾向と一致している.

機械加工によって,素材から試験片軸が押出し 方向と一致するように,図2に示すような平行部 直径8mm,平行部長さ10mmの回転曲げ疲労試験 片を採取した.試験片はエメリー紙で順次研磨し た後,バフ研磨により鏡面に仕上げ試験に供した.

試験には小野式回転曲げ疲労試験機を用いた. 繰返し速度は約20Hzである.腐食疲労試験は,流 量140ml/minの定量ポンプを用いて,純水を試験片 平行部に滴下しながら行った.微小き裂の観察は, レプリカ法によって行った.また,電気化学的な 面からMg合金の耐食性について検討するため,ア ノード分極曲線を測定した.

#### 3. 実験結果

#### 3.1 疲労強度

図3に室温大気中および純水中におけるS-N 曲線を示す.中空印の大気中の結果に注目すると、 有限寿命域の疲労強度には材料間でほとんど差が ない.一方,N=10<sup>7</sup>回に対する疲労強度を疲労限 度とすれば,AZ61AとAM60では80MPa,AZ80A

<sup>\*</sup> 岐阜大学 工学部 機械システム工学科 准教授



図1 微視組織様相: (a) AZ80A, (b) AZ61A, (c) AM60.

|          |     |      |      |        |        |        | /-    |       |       |         |      |
|----------|-----|------|------|--------|--------|--------|-------|-------|-------|---------|------|
| Material | Al  | Zn   | Mn   | Ni     | Cu     | Fe     | Si    | Pb    | Ca    | Sn      | Mg   |
| AZ80A    | 8.3 | 0.6  | 0.23 | 0.001  | 0.002  | 0.002  | 0.03  |       |       |         | Bal. |
| AZ61A    | 6.4 | 0.74 | 0.35 | 0.0012 | 0.0029 | 0.001  | 0.015 | 0.001 | 0.001 | < 0.001 | Bal. |
| AM60     | 6   | 0.02 | 0.32 | 0.0005 | 0.003  | 0.0031 | 0.03  |       |       |         | Bal. |

表1 各材の化学成分 (wt%).

| Material | 0.2% proof<br>stress<br>σ <sub>0.2</sub> (MPa) | Tensile<br>strength<br>σ <sub>B</sub> (MPa) | Elongation $\delta$ (%) | Reduction<br>of area<br>\$\V (%)\$ | Elastic<br>modulus,<br><i>E</i> (GPa) | Vickers<br>hardness,<br><i>HV</i> |
|----------|------------------------------------------------|---------------------------------------------|-------------------------|------------------------------------|---------------------------------------|-----------------------------------|
| AZ80A    | 196                                            | 273                                         | 14.6                    | 13.1                               | 50                                    | 69                                |
| AZ61A    | 186                                            | 248                                         | 14                      | 23.8                               | 52                                    | 66                                |
| AM60     | 196                                            | 246                                         | 13.1                    | 32.6                               | 58                                    | 64                                |

表2 各材の機械的性質.



図2 疲労試験片形状.

では100MPaであり, Al含有量の多いAZ80Aが最も 高い疲労限度を示した. すなわち, Al含有量の増 加によって引張り強さが上昇したのと同じ傾向と なっている.

これに対し,大気中と純水中(中実印)の結果 を比較すると,大気中の有限寿命域における疲労 強度は純水中とほぼ一致するが,純水中では大気 中の疲労限度よりも低い応力レベルでも破壊が生 じている.また,各材料間で純水中の疲労強度に 差がないことから,大気中での疲労限度が最も高 いAZ80Aが,結果的に腐食に対して敏感であることを示している.

## 3.2 き裂発生挙動

まず,大気中のき裂発生挙動ついて検討する. 図4はAM60材のσ=140MPaにおけるき裂発生起 点のSEM観察結果である.き裂は30μm程度の介 在物が割れて発生していることがわかる.EDS分 析の結果,介在物からはMgが検出されず,AlとMn の金属間化合物であることが判明した.

京都府中小企業技術センター技報No.37(2009)

このような寸法が数十 $\mu$ m程度の金属間化合物 は、AZ81AおよびAZ60Aの表面でも確認された. 図5は、高応力の $\sigma$ =150MPaにおける各材料のき 裂発生起点近傍の破面写真である. 図中の矢印で 示すように、いずれの場合もき裂発生起点の表面 近傍には介在物が確認される.一方、図6は $\sigma$ =110MPaにおける破面であるが、き裂発生起点に 介在物は認められない. すなわち、いずれの材料 も高応力レベルでは介在物を起点とし、低応力レ ベルではすべりによってき裂が発生することが判 明した.なお $\sigma$ =130MPaにおける破面でも、き裂 発生起点に介在物が認められる場合があり、き裂



図3 大気中および純水中におけるS-N 曲線.

うである.またこのようなAl-Mn系の金属間化合物からの疲労き裂発生は,AZ系合金でしばしば報告されている<sup>(1), (2)</sup>.

一方,図7(a)は純水中 $\sigma$ =50MPaで行った試験終 了後の,AM60材の表面様相である.表面はMg (OH) 2もしくはMgOの皮膜で覆われており,ひび 割れが生じていることがわかる.無負荷状態の試 料を腐食させた場合には,このような割れは生じ ておらず,荷重負荷によって皮膜が割れたと考え られる.また,矢印で示すような腐食ピットが表 面皮膜が割れた部分から発生しており,AZ80A, AZ61Aでもほぼ同様の表面様相が確認された.図 7(b)は,AZ80A( $\sigma$ =80MPa)のき裂発生起点の



図4 き裂発生起点となった介在物のEDX分析結 果(AM60, σ=140MPa):(a) SEM像, (b) Mg, (c) Al, (d) Mn.



図5 大気中の高応力下におけるき裂発生起点観察例(σ=150MPa): (a) AZ80A,(b) AZ61A, (c) AM60.



図6 大気中の低応力下におけるき裂発生起点観察例(σ=110MPa): (a) AZ80A,(b) AZ61A, (c) AM60.

表面をSEMで観察した例である.き裂が腐食ピットから発生していることがわかる.図8は、 AZ61AおよびAM60 ( $\sigma$  =50MPa)のき裂発生起 点近傍破面を、約45<sup>°</sup> 傾けた状態でSEM観察した 例である.いずれの場合も、表面層では皮膜に割 れが生じ、き裂発生起点の破面には矢印で示す腐 食ピットが認められた.なおAZ80Aの場合、破面 のたたきあわせによって、破面上の腐食ピットが 明瞭ではなかった.

図9に大気中( $\sigma$ =140MPa)および純水中( $\sigma$ =80MPa)における各材のき裂長さ2cと繰返し数比  $N/N_{\rm f}$ ( $N_{\rm f}$ :疲労寿命)の関係を示す.大気中で は、AZ80AおよびAZ61Aは $N/N_{\rm f}$ =0.1、AM60は  $N/N_{\rm f}$ =0.3で介在物からき裂が発生した.一方純 水中では、いずれの材料もき裂は $N/N_{\rm f}$ >0.4で発 生している.



図7 試験終了後の試験片表面様相:(a) AM60, σ=50MPa, (b) AZ80A, σ=80MPa.



図8 純水中におけるき裂発生起点観察例 (σ=50MPa): (a) AZ80, (b) AZ61, (c) AM60.



図 9 大気中 (σ=140MPa) および純水中 (σ=80MPa) における各材のき裂長さ2cと 繰返し数比N/N<sub>f</sub>(N<sub>f</sub>:疲労寿命)の関係.

## 3.3 微小き裂成長挙動

図10にき裂成長速度da /dN と最大応力拡大係 数Kmaxの関係を示す.大気中ではAlの含有量が多 いAZ80Aのda /dN が遅い傾向が見られる.しかし, 純水中では材料間でのda /dN の差が小さく,大気 中とほぼ同程度のda /dN になった.すなわち,腐 食によるき裂進展の加速,あるいは腐食生成物に よる顕著なくさび効果などは認められなかった. また破面様相は,大気中と純水中ではほぼ同様で あった.

#### 4. 考察

#### 4.1 大気中における疲労特性

すべての材料において,高応力レベルでき裂発 生起点となった介在物のAl-Mn系の金属間化合物 は,状態図よりMnAl4あるいはMnAl6と推測される. 介在物分布の定量的評価は行っていないが,試験 片表面や破面上で認められる介在物の量は少なく, また介在物の大きさや分布に材料間で顕著な差は 認められなかった.これはいずれの材料も,添加 元素Mnの含有量がほぼ同程度であるためと考え られる. 図3から有限寿命域における疲労強度に材料間 でほとんど差が見られなかった.これは、図10で 示したようにき裂成長速度に若干の差が認められ たものの、いずれの材料も応力レベルが高い場合 には、Al-Mn系金属間化合物を起点としてき裂が 発生し、その大きさや分布の相違が材料間で小さ かったためと思われる.一方、低応力レベルでは、 き裂はすべり変形によって発生した.したがって、 Al含有量が最も多く、高強度のAZ81Aで疲労限度 が最も高くなったと考えられる.

# 4.2 純水中における疲労特性

図7,8で示したように、いずれの材料も荷重 負荷によって表面皮膜が割れ、腐食ピットが発生 することによって大気中の疲労限度以下の応力で もき裂が発生し、破断にいたったと考えられる. 今後ピットの成長速度や、ピットからのき裂発生 について力学的に検討する必要がある.また、純 水中と塩水中におけるアノード分極曲線の測定結 果を図11に示す.腐食電位にはほとんど差が無い が、純水中ではAZ80Aの腐食速度が最も速いこと がわかる.すなわち、AZ80Aが腐食に対して最も



図10 大気中(σ=140MPa)および純水中(σ=80MPa)における 各材のき裂成長速度da/dNと最大応力拡大係数Kmaxの関係

敏感であったのは、このような電気化学的特性に 起因すると考えられる. Mnの添加はMg合金の耐 食性向上に有効であるが、Alは有害とされている. したがって、AZ80AではAl含有量が最も多いため に、腐食に対して敏感となったと考えられる. ま たZnについては、AZ61AとAM60の結果にほとん ど差がないことから、耐食性に与える影響が小さ いことを示している.

# 5. まとめ

本報告では、大気中および純水中において、合 金成分が異なる3種類の展伸Mg合金AZ81A、 AZ61AおよびAM60を用いて回転曲げ疲労試験を 行い、それらの疲労挙動について検討した。その 結果、大気中ではいずれの材料でも高応力ではAl-Mn系の金属間化合物がき裂発生起点となり、低応 力レベルではすべりによりき裂が発生すること、 有限寿命域における疲労強度は材料間で差が見ら れないが、Al含有量の最も多いAZ81Aの疲労限度 が最も高くなることなどを明らかにした。また純 水中では、大気中の疲労限度より低い応力状態で も腐食ピットを形成して破断が生じ、Al含有量が 最も多く、大気中での引張り強さと疲労限度が高 いAZ80Aが、腐食による強度低下も大きいことを 示した.

### 参考文献

- (1) Y. Uematsu, K. Tokaji, M. Kamakura, K. Uchida, H. Shibata and N. Bekku, "Effect of Extrusion Conditions on Grain Refinement and Fatigue Behaviour in Magnesium Alloys", Materials Science and Engineering: A, Vol.473, pp.131-140 (2006).
- (2) Z.B. Sajuri, Y. Miyashita, Y. Hosokai and Y. Mutoh, "Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys", International Journal of Mechanical Sciences, Vo.48, pp.198-209 (2006).

