プレス成形と接合の複合化による深い容器の成形技術の開発*

鎌田和彦**

大東卓央***

後藤卓 三***

【要旨】

現在、プレス成形の分野では、生産コストの削減、リードタイムの短縮、多品種少量生産への対応が強 く求められている。そこで、これらの課題に対応した新しい加工方法として、プレス成形と接合の複合化 による深い容器の成形技術の開発を試みた。研究では、冷間圧延鋼板(SPCC)、オーステナイト系ステン レス鋼板(SUS304)、アルミニウム板(A 1050調質O)の各材質ごとの展開プランクを用いた深い円筒容 器への成形実験を行った。

また、成形品の側壁にある継ぎ目を Tig 溶接、レーザービーム溶接し一体化も試みた。

その結果、各材質とも展開ブランクの分割数が3分割又は、2分割による複合加工が適していることが わかった。

1.緒 言

従来のプレス機械による絞り加工、特に深い容 器の絞り加工では、生産に至るまでに長いリード タイムと多額の金型製作費を必要とするため、多 品種少量生産にはうまく対応できていないのが現 状であり、この問題を解決することが強く望まれ ている。

そこで、深絞り加工において、絞り成形と接合 を組み合わせた複合加工により多品種少量生産に 対応できる新しいフレキシブルな加工方法につい て研究を行った。

ところで、深絞り加工の成否は、素板のポンチ

* 「地域集積中小企業活性化事業」 (共通技術研究開発事業「メカトロ技術の適用に関する応用研究」)

** 機械電子課 主 任

*** 同上 主任研究員

肩部にあたる材料強度とフランジ部の絞り抵抗の 大小によって決定されるので、一工程で深い容器 を得ようと外径の大きい素板(ブランク)を用い るとフランジ部の絞り抵抗が大きくなりポンチ肩 部で破断を生じる。そのため、一般に深い容器の 成形では、初絞りの後に再絞りやしごき加工を施 す多工程により行われている。

本研究では、図1のようにフランジの一部を切 り取ったブランク(展開ブランク)と接合を組み 合わせた複合加工による深い容器の成形^{1)~4)}に ついて検討を行ったので報告する。

この方法によれば、深い容器を一工程で成形で きるので深絞りが難しい製品の多品種少量あるい は極少量生産に対しては、有効な加工法になる。

2.実験方法

2.1 展開ブランクの製作

展開ブランクは、板厚1mmの冷間圧延鋼板 (SPCC)、オーステナイト系ステンレス鋼板 (SUS304)、アルミニウム板(A1050調質O)を 図2に示すようにフランジ部の一部を切り取った ものである。ブランク形状は、外径100mmと 110mmの2種類、分割数は2分割、3分割、4分 割の3種類とした。

図2 展開ブランクの形状

図2において、dpはポンチ径、dcは通常の深絞 り加工と同様に絞り変形を受ける部分の直径を示 している。展開プランクは、フランジの外周Srの 長さの和とC点における円周の長さScが等しくな るように製作した。これにより、dcより外側のフ ランジ部は、絞り加工中は順次ポンチ側へ移動 し、C点から順に接触しながら絞り変形を受けて 容器の側壁部になる。

2.2 深絞り試験

以上の方法で制作したブランクを万能深絞り試 験機(最大ポンチ荷重120kN)を使用して、深い 円筒容器に成形実験を行った。

使用した工具は、ポンチ径40mm、肩半径2 mm、ダイス内径43mm、肩半径2mm、材質 SKD11のものを使用した。潤滑は低粘度のパラ フィン系鉱油のみ、同パラフィン系鉱油とテフロ ンシート(t=0.1mm)の併用の2通り行った。 しわ押さえ荷重は、製作したブランクの外径と形 状によらず、材質ごとにそれぞれ2通りずつ設定 して実験を行った。

以上の実験条件をまとめて表1に示す。 なお、表中の()書きの数値は、しわ押さえ

ブランクの材質	ブランクの形状		しわ押さえ荷重	潤
	外径	100mm	7.0kN(約1.6MPa)	パラフィン系位油
SPCC	分割数 2	, 3 , 4	3.5kN(約0.8MPa)	
51 00	外径	110mm	3.54N(約0.6MPa)	パラフィン系鉱油
	分割数 2	, 3, 4	S.SKIN (MJU.OIVIFA)	「パラフィン系鉱油 + テフロンシート
	外径	100mm	8.0kN(約1.8MPa)	パラフィン系位油
SU 19304	分割数 2	, 3, 4	4.0kN(約0.9MPa)	バンション示弧油
505504	外径	110mm		パラフィン系鉱油
	分割数 2	, 3, 4	4.0KIN (#90.7 MFa)	パラフィン系鉱油 + テフロンシート
	外径	100mm	1.4kN(約0.3MPa)	パラフィン系鉱油
A 1050 - O	分割数 2	, 3, 4	0.7kN(約0.2MPa)	バンション示弧油
A 1050 - O	外径	110mm	0.7kN(約0.1MPa)	パラフィン系鉱油
	分割数 2	, 3, 4	U.7KN(初0.1MPa)-	「 パラフィン系鉱油 + テフロンシート

表1 実験条件

荷重を各ブランクの初期面積で除した平均値であ る。

2.3 容器側壁部の接合

展開ブランクを深い容器に成形するとその側壁 には、継ぎ目が存在する。その継ぎ目を接合する ためTig溶接、レーザービーム溶接を試みた。

3.実験結果及び考察

3.1 SPCC板の場合

潤滑条件(パラフィン系鉱油のみ)を一定にし て、フランジ部の分割数と絞り領域の直径dcを変 化させ、さらにしわ押さえ荷重を変化させたとき のSPCC板の成形状況と最大ポンチ荷重の変化を表 2 に示す。

この表から3分割、4分割の成形性が良いこと (絞り比dc / dp = 65 / 40においても成形良好であ る。)、2分割でも成形可能なこと、絞り比の増 加に伴い破断荷重に近づくこと及び、しわ押さえ 荷重を半減させると全体的に最大ポンチ荷重が1 kN~2kN低減傾向を示すことがわかる。

次に、しわ押さえ荷重を低めに一定にして、フ ランジ部の分割数と絞り領域の直径dcを変化さ せ、さらに潤滑条件を変化させたときのSPCC板の 成形性と最大ポンチ荷重の変化を表3に示す。

この表から潤滑(パラフィン系鉱油+テフロン シート)を良くすると最大ポンチ荷重は、さらに 1 k N ~ 5 k N 低減傾向を示し、成形性は向上す る。(4分割、絞り比65/40において成形良好に なる。)

表2 冷間圧延鋼板(SPCC)の成形可否に対するブランクの分割数、絞り比dc/dp及び、

絞り比め	dc /	′ dp	50 / 40	55 / 40	60 / 40	65 / 40	70 / 40	・試 料
	し	7.0				×	×	材質 SPCC 形状 100mm
分割数	わ	kN	P=26.7kN	P=33.7kN	P=39.8kN	P=46.4kN		板厚 1.0mm
	押	3.5				× ×	×	(dc,dpの単位mm)
2	さ	kN	P=26.2kN	P=32.3kN	P=38.6kN	P=45.0kN		・工具
	え		(-0.5kN)	(- 1.4kN)	(- 1.2kN)	(- 1.4kN)		ポンチ径 40.0mm
	し	7.0					×	肩半径 2 mm ダイス内径 43 0mm
分割数	わ	kN	P=26.8kN	P=32.5kN	P=40.6kN	P=46.1kN	P=51.5kN	肩半径 2 mm
	押	3.5					×	、 週週 パニマノンズ 依油
3	さ	kN	P=26.4kN	P=30.6kN	P=40.0kN	P=44.9kN	P=49.5kN	・ 月 「ハノノイノ尔弧/山
	え		(-0.4kN)	(- 1.9kN)	(-0.6kN)	(- 1.2kN)	(-2.0kN)	・成形状態
	し	7.0					×	×破 断 成形不良(継ぎ日隙間1mm以
分割数	わ	kN	P=26.1kN	P=34.1kN	P=40.7kN	P=46.8kN	P=51.3kN	成形可能 // 1 mm未注
	押	 3.5					 ×	成形良好(″ 0.5mm未
4	さ	kN	P=26.5kN	P=32.9kN	P=39.4kN	P=44.4kN	P=50.0kN	・Pは、最大ポンチ荷重
	え		(+0.4kN)	(- 1.2kN)	(- 1.3kN)	(- 2.4kN)	(- 1.3kN)	()内は、しわ押さえを変化さ

しわ押さえ荷重の影響

			i	1	i	i	. ≐.1 ⊻.1
糸	ŷIJ	tĽdc∕dp	50 / 40	55 / 40	60 / 40	65 / 40	・
						×	初頁 SPCC 形状 110mm
分割数	潤	パラフィン系鉱油	P=28.3kN	P=34.2kN	P=38.9kN	P=44.7kN	板厚 1.0mm (de dpの単位mm)
		パラフィン系鉱油				×	(uc,upoy丰应mm)
2	滑	+ テフロンシート	P=25.8kN	P=31.7kN	P=37.9kN	P=44.5kN	・工具
			(- 2.5kN)	(- 2.5kN)	(- 1.0kN)	(-0.2kN)	ボンチ径 40.0mm 肩半径 2 mm
							ダイス内径 43.0mm
分割数	潤	パラフィン系鉱油	P=27.3kN	P=32.2kN	P=39.5kN	P=46.9kN	肩半径 2 mm
		パラフィン系鉱油					・しわ押さえ荷重 3.5kN
3	滑	+ テフロンシート	P=25.1kN	P=31.2kN	P=38.3kN	P=43.2kN	,代现北能
			(- 2.2kN)	(- 1.0kN)	(- 1.2kN)	(- 3.7kN)	×破断
						×	成形不良(継ぎ目隙間1mm以上
分割数	潤	パラフィン系鉱油	P=26.8kN	P=33.4kN	P=41.5kN	P=48.4kN	成形可能(
		パラフィン系鉱油					
4	滑	+ テフロンシート	P=24.9kN	P=31.3kN	P=37.4kN	P=42.8kN	 ・ P は、最大ポンチ荷重 ()内は、潤滑を変化させた時
			(- 1.9kN)	(- 2.1kN)	(-4.1kN)	(- 5.6kN)	Pの増減を示す。

表3 冷間圧延鋼板 (SPCC)の成形可否に対するブランクの分割数、絞り比dc / dp及び、潤滑の影響

図3に、表3において潤滑条件を良くした場合 の絞り比=60/40(dc=60mm、dp=40mm)に おける各分割数ごとのポンチ荷重-ストロークの 関係と、この材料の限界絞り比直下の円形ブラン ク(80mm,t=1.0mm)のポンチ荷重-スト ロークの関係を併せて示す。

この図から、フランジ部を分割した直径110mm のブランクは、限界絞り比直下の円形ブランクよ りも深い円筒容器に成形されている。

そして、分割数はポンチ荷重とストロークの関係に影響が少なくかつ、ポンチストロークが 10mmくらいからポンチ荷重が一定になるのがわ かる。

このことは、展開ブランクの外径をさらに大き くすれば円形ブランクでは成形不可能な底の深い 円筒容器に成形できることを示す。

図3 SPCC板のポンチ荷重 - ストローク線図

写真1に各分割数ごとの成形品と外径180mmの 成形品(4分割、dc=55mm、dp=40mm、成形 深さ80mm)を併せて示す。

3.2 SUS304板の場合

潤滑条件 (パラフィン系鉱油のみ)を一定にし

て、フランジの分割数と絞り領域の直径dcを変化 させ、さらにしわ押さえ荷重を変化させたときの SUS304板の成形状況と最大ポンチ荷重の変化を表 4に示す。

この表からSUS304板の成形性は、あまり良くな

写真1 SPCC板の成形品例(左から 110mm 分割数2,3,4、 180mm分割数4)

い。(全体的に成形不良、破断が多い。)

原因として、フランジ部分がC点から順に接触 しながら絞り変形を受けるときのフランジの縮み 抵抗が材料の引張強さに比べ相対的に大きいこ と、材料強度が高いためダイス肩への接触面圧が 高くなり低粘度の潤滑油では、潤滑作用が不十分 になるためではないかと考えられる。⁵⁾後者のこ とは、ダイス表面に傷を生じ易いことからも推察 される。

一方、表4からしわ押さえ荷重を半減させると
 最大ポンチ荷重は全体的に低減傾向を示し、成形
 性は向上するのもわかる。(3分割、絞り比dc/
 dp = 60 / 40において成形良好になる。)

なお、成形品には、スプリングバックの影響か ら小さい絞り比では、成形品側壁部にある継ぎ目 部分に隙間を生じ易い。

・試料

形状

材質 SUS304

100mm

表4 ステンレス鋼板(SUS304)の成形可否に対するブランクの分割数、絞り比dc/dp及び、

絞り比dc / dp		50 / 40	55 / 40	60 / 40	65 / 40	
	し	8.0	×	×	×	×
分割数	わ	kN	P=64.9kN	P=78.0kN	P=89.3kN	
	押	4.0	×	×	×	×
2	さ	kN	P=60.2kN	P=76.2kN	P=87.4kN	
	え		(- 4.7kN)	(- 1.8kN)	(- 1.9kN)	
	し	8.0			×	×
分割数	わ	kN	P=55.3kN	P=77.1kN	P=93.5kN	
	押	4.0				×
3	さ	kN	P=57.6kN	P=72.2kN	P=92.4kN	P=92.2kN
	え		(+2.3kN)	(- 4.9kN)	(- 1.1kN)	
	し	8.0			×	×
分割数	わ	kN	P=57.0kN	P=81.3kN	P=95.4kN	
	押	4.0			×	×
4	さ	kN	P=56.1kN	P=72.8kN	P=95.5kN	
	え		(-0.9kN)	(- 8.5kN)	(+0.1kN)	

板厚 1.0mm	۱	
(dc,dpの単	単位mm)	
工具		
ポンチ径	40.0mm	
肩半径	2 mm	
ダイス内径	43.0mm	
肩半径	2 mm	
潤滑 パラフ	7ィン系鉱	油
	1 2 73(20	
成形状態		
×破 断		
成形不良(継ぎ目隙間	間1mm以上)
成形可能	"	1 mm未満)
成形良好("	0.5mm未満)
Pは、最大ホ	ペンチ荷重	
())内は	しわ押さ	えを変化させた
	でに」「こう」	
	1°C /J / 9 °	

しわ押さえ荷重の影響

表5 ステンレス鋼板(S	US304)の成形可否に対す	「るフランクの分割数、	絞り比dc/dp及び、	潤滑の影響
--------------	----------------	-------------	-------------	-------

糸	交り	ttdc / dp	50 / 40	55 / 40	60 / 40	65 / 40	・試料
				×	×	×	材質 SUS304 形状 110mm
分割数	潤	パラフィン系鉱油	P=60.8kN	P=73.9kN	P=92.0kN		板厚 1.0mm
		 パラフィン系鉱油			×	×	(dc,dpの単位mm)
2	滑	+ テフロンシート	P=45.7kN	P=59.9kN	P=88.6kN	P=85.4kN	・エー具
			(- 15.1kN)	(- 14.0kN)	(- 3.4kN)		ボンチ径 40.0mm 肩半径 2 mm
					×	×	ダイス内径 43.0mm
分割数	潤	パラフィン系鉱油	P=58.1kN	P=75.9kN	P=95.4kN		肩半径 2 mm
		パラフィン系鉱油				×	・しわ押さえ荷重 4.0kN
3	滑	+ テフロンシート	P=41.9kN	P=61.4kN	P=82.9kN	P=84.8kN	- 古 124年代
			(- 16.2kN)	(- 14.5kN)	(- 12.5kN)		・00形状態 ×破 断
					×	×	成形不良(継ぎ目隙間1mm以上)
分割数	潤	パラフィン系鉱油	P=62.0kN	P=72.8kN	P=94.0kN		成形可能 " 1 mm未満) 成形良好 " 0.5mm未満)
		パラフィン系鉱油				×	
4	滑	+ テフロンシート	P=46.2kN	P=73.9kN	P=77.5kN	P=86.0kN	 ・ P は、最大ポンチ荷重 () 内は 潤滑を変化させた時の
			(- 15.8kN)	(+1.1kN)	(- 16.5kN)		Pの増減を示す。

次に、しわ押さえ荷重を低めに一定にして、フ ランジの分割数と絞り領域の直径dcを変化させ、 さらに潤滑条件を変化させたときのSUS304板の成 形性と最大ポンチ荷重の状況を表5に示す。この 表から潤滑(パラフィン系鉱油+テフロンシー ト)を良くすると最大ポンチ荷重はさらに低減傾 向を示し、成形性は向上する。(3分割、4分 割、絞り比60/40において成形良好になる。)

図4に、表5において潤滑条件を良くした場合 の絞り比=60/40(dc=60mm、dp=40mm)に おける各分割数ごとのポンチ荷重-ストロークの 関係と、この材料の限界絞り比直下の円形ブラン ク(75mm,t=1.0mm)のポンチ荷重-スト ロークの関係を併せて示す。

この図からも、フランジ部を分割した直径 110mmのブランク(3分割、4分割)は、限界絞

図4 SUS304板のポンチ荷重 - ストローク線図

り比直下の円形ブランクよりも深い円筒容器に成 形されている。

2分割では、成形最後にポンチ荷重が急に増加 して破断している。破断原因として、成形最後に 当たるフランジ部分の縮み抵抗の増加が考えられ る。(2分割の場合のフランジ部分は、他の分割 数のものに比べて特に末広がりである。)

また、2分割、3分割及び、4分割のポンチ ストローク線は、ポンチ荷重にばらつきはあるも のの似かよっている。このことから分割数による 成形性への影響は少ないと考える。

3.3 A1050 - O材の場合

潤滑条件(パラフィン系鉱油)を一定にして、 フランジの分割数と絞り領域の直径dcを変化さ せ、さらにしわ押さえ荷重を変化させたときのA 1050 - O材の成形状況と最大ポンチ荷重の状態を 表6に示す。

この表からA1050 - O板の成形性は良くない。 (全体的に破断が多い。)

原因として、A1050 - O板のr値が引張強さに 比べ相対的に小さいために、小さい絞り比の段階 でポンチ荷重が即、破断荷重を越えるためと考え られる。

一方、表6からしわ押さえ荷重を半減させると 反対に最大ポンチ荷重は1kN~2kN増加傾向を 示す。しかし、破断した試料からは成形性の向上 (破断時の絞り深さの向上)を確認できる。

次に、しわ押さえ荷重を低めに一定にして、フ ランジの分割数と絞り領域の直径dcを変化させ、 さらに潤滑条件を変化させたときのA1050-O板 の成形性と最大ポンチ荷重の状況を表7に示す。

この表から潤滑(パラフィン系鉱油+テフロン シート)を良くすると最大ポンチ荷重は、0.5kN~ 2.5kN低減し成形性は格段に向上する。

そして、2分割においても良好な成形を行え る。

図5は、表5において潤滑条件を良くした場合

表6 アルミニウム板(A1050-O)の成形可否に対するブランクの分割数、絞り比dc/dp及び、

絞り	Ĵ₽₽₽dc	/ dp	50 / 40	55 / 40	60 / 40	65 / 40	• 試 米斗
	L	1.4	×	×	×	×	材質 A1050 - O 形状 100mm
分割数	ゎ	kN	P=9.0kN	P=11.4kN	P=12.3kN		板厚 1.0mm
	押	0.7	×	×	×	×	(dc,dpの単位mm)
2	さ	kN	P=11.3kN	P=13.2kN	P=14.5kN		・工具
	え		(+2.3kN)	(+1.8kN)	(+2.2kN)		ポンチ径 40.0mm
	し	1.4	×	×	×	×	「「肩羊径」 2 mm ダイス内径 43.0mm
分割数	ゎ	kN	P=12.6kN	P=9.4kN	P=12.3kN		肩半径 2 mm
	押	0.7			×	×	・潤滑 パラフィン系鉱油
3	t	kN	P=10.6kN	P=12.3kN	P=14.1kN		
	え		(- 2.0kN)	(+2.9kN)	(+1.8kN)		・成形状態
	し	1.4		×	×	×	
分割数	ゎ	kN	P=8.2kN	P=12.6kN	P=12.3kN		成形可能 " 1 mm未満)
	押	0.7		×	×	×	1
4	さ	kN	P=8.9kN	P=14.7kN	P=12.8kN		・Pは、最大ポンチ荷重
	え		(+0.7kN)	(+2.1kN)	(+0.5kN)		()内は、しわ押さえを変化させた時のPの増減を示す。

しわ押さえ荷重の影響

表7	アルミニウム板 (A1050	- 0)の成形可否に対するフ	ランクの分割数、	絞り比dc/dp及び、	、潤滑の影響
----	----------------	----------------	----------	-------------	--------

<i>μ</i> .	÷ 1)	hkala (alm	F0 (40	FF (40	00 (40	05 (40	・試 料
Â.	עי	ELac / ap	50740	55740	60740	65740	材質 A1050 - O
			×	×	×	×	形状 110mm
分割数	潤	パラフィン系鉱油	P=10.6kN	P=12.6kN	P=13.0kN		板厚 1.0mm
		└				×	(dc,dpの単位mm)
2	滑	+ テフロンシート	P=8.4kN	P=10.1kN	P=11.2kN	P=12.6kN	・工具
			(- 2.2kN)	(- 2.5kN)	(- 1.8kN)		ポンチ径 40.0mm 肩半径 2 mm
					×	×	ダイス内径 43.0mm
分割数	潤	パラフィン系鉱油	P=9.2kN	P=12.0kN	P=13.0kN		肩半径 2 mm
		パラフィン系鉱油				×	・しわ押さえ荷重 0.7kN
3	滑	+ テフロンシート	P=8.4kN	P=9.7kN	P=11.8kN	P=13.1kN	
			(- 0.8kN)	(- 2.3kN)	(- 1.2kN)		・成形状態 ×破 断
					×	×	成形不良(継ぎ目隙間 1 mm以上)
分割数	潤	パラフィン系鉱油	P=8.9kN	P=12.7kN	P=12.9kN		成形可能(
		パラフィン系鉱油				×	
4	滑	+ テフロンシート	P=8.2kN	P=10.2kN	P=12.3kN	P=13.8kN	・P は、最大ポンチ荷重 ()内は、潤滑を変化させた時の
			(+0.7kN)	(- 2.5kN)	(-0.6kN)		Pの増減を示す。

図5 A1050 - O板のポンチ荷重 - ストローク線図

の絞り比 = 60 / 40 (dc = 60mm、dp = 40mm)に おける各分割数ごとのポンチ荷重 - ストロークの 関係と、この材料の限界絞り比直下の円形ブラン ク(75mm)のポンチ荷重 - ストロークの関係 を併せて示している。

この図からも、フランジ部を分割した直径

110mmのブランクは、限界絞り比直下の円形ブラ ンクよりも深い円筒容器に成形されている。

そして、分割数はポンチ荷重とストロークの関 係には影響が少なく、ポンチストロークが10mm くらいからポンチ荷重が一定になる。

3.4 継ぎ目部の接合の試み

本成形では、容器側壁部に継ぎ目が存在する。 この継ぎ目を接合する試みとしてTig溶接、レー ザービーム溶接を行った。(各板材の成形品共 に、Tig溶接、レーザービーム溶接による接合は可 能である。)

Tig溶接は、溶加棒と裏当てジグを用いて手溶接 で行われた。各材質の成形品共に容器内壁、外壁 に良好な溶接ビードが形成され、完全に接合され ている。しかし、薄板のTig溶接は、難しく、熟練

写真 2 接合例 (左からSPCC**材のレーザー ビーム溶接、**A1050 - O**材の**Tig**溶接)**

した技能、技術を必要とする。

レーザービーム溶接の場合は、各試料共に継ぎ 目部分の隙間が大きいために(特にSUS304材)、 ビーム径を大きくしてかなり低速度に溶接しない と接合は困難である。また、A1050 O材の低出 力の溶接は、母材の溶融状態が不安定になり完全 な接合は出来ない。

写真2に接合例を示す。

4.結 言

プレス加工分野における多品種少量生産に対応 可能な新しい加工方法の研究を行った。モデル実 験として展開ブランクと接合を組み合わせた複合 加工による深い円筒容器への成形実験を冷間圧延 鋼板(SPCC)、オーステナイト系ステンレス鋼板 (SUS304)、アルミニウム板(A1050調質O)の 各材料ごとに行った。

また、各材料の成形品の継ぎ目部分の接合も試 みた。そして、次の結果を得ることが出来た。

- (1) 各板共に、3分割又は、2分割の展開ブラン クを用いた複合加工が適している。
- (2) 各板共に、展開ブランクの分割数による成形
 性への影響は少なく、絞り比による影響は大きい。

- (3) 冷間圧延鋼板 (SPCC)の展開ブランクの成形 性は比較的良好であり、2分割においても成形 可能である。
- (4) オーステナイト系ステンレス鋼板(SUS304)の展開ブランクの成形では、材質特性による破断傾向、スプリングバックの影響及び、ダイスへの影響(傷を生じ易い。)が見られる。(ブランク形状、ポンチダイスのクリアランス、潤滑方法及びダイスの材質を適正にする必要がある。)
- (5) アルミニウム板(A1050-O)の展開ブラン クの成形性は、しわ押さえ荷重を低くして潤滑 性を良くすると格段に向上し、2分割において も成形可能となる。
- (6) 成形品の継ぎ目の接合は、Tig溶接、レーザー ビーム溶接共に可能である。

しかし、Tig溶接による薄板成形品の継ぎ目部分 の接合は、難しい。その点、レーザービーム溶 接では、継ぎ目部分の隙間を完全に密着させる ように成形できれば比較的スムーズに接合でき るものと推察される。

(謝辞)

最後に本研究を遂行するに当たり、終始御指導 頂きました京都工芸繊維大学 工芸学部 山口克彦 教授、実験の際、大変お世話になった大学院生 新 原基宏さんに深く感謝申し上げます。

また、接合に御協力頂きました小坂金属工業株 式会社 代表取締役 小坂憲一氏、三菱電機株式会 社 関西支社 産業メカトロニクス部加工機課 課長 森川美光氏、両氏に深く感謝申し上げます。

- <参考文献>
- 1)山口克彦:金属の塑性加工技術における高精 度化、知能化に関する調査研究

(受託研究報告書 平成9年3月27日)

- 2)山口克彦、高倉章雄:平成8年度 塑性加工春 期講演会(1996.5.10~12名古屋市)P.250
- 3)山口克彦、高倉章雄、新原基宏、白川信彦:
 第47回塑性加工連合講演会(1996.11.2~
 4 金沢市)P.343
- 4)山口克彦、高倉章雄、新原基宏、白川信彦:
 第48回塑性加工連合講演会(1997.11.12~ 14山口市)P.353
- 5)日本塑性加工学会編:塑性加工技術シリーズ 13「プレス絞り加工」コロナ社 P146、P149